What is An Explosion?

​​​An explosion can be defined as a very fast chemical reaction involving solid, dust or gas, during which a sudden, rapid and violent release of energy occurs. This phenomenon lasts only several milliseconds and results in the production of very high temperatures and pressures. During detonation, the hot gases that are produced expand to occupy the available space, leading to wave type propagation through space that is transmitted spherically through an unbounded surrounding medium. Along with the produced gases, the air around the blast, particularly for air blasts also expands and its molecules become compacted, resulting in blast wave and shock front. The blast wave contains a large part of the energy that was released during detonation and moves faster than the speed of sound.

When an explosion occurs, the pressure surrounding the element is initially equal to the atmospheric pressure before undergoing an instantaneous increase to a peak pressure at the arrival time when the shock front reaches that point. The peak incident pressure is also known as the peak overpressure. The value of the peak overpressure as well as the velocity of propagation of the shock wave decrease with increasing distance from the detonation centre. After its peak value, the pressure decreases with an exponential rate until it reaches the atmospheric pressure. Above the atmospheric pressure, the pressure-time diagram is called the positive phase duration. After the positive phase of the pressure-time diagram, the pressure becomes smaller (referred to as negative phase) than the atmospheric value, and finally returns to it. During this phase, the structures are subjected to suction forces, which is the reason why sometimes during blast loading glass fragments from failures of facades are found outside a building instead in its interior.

When an explosion occurs, its energy is released in the form of heat. The heat released under adiabatic conditions is called the heat of explosion. The heat of explosion is a fundamental parameter, since it determines the work capacity of the explosive. The violence of the explosion depends on the rate at which energy is released.

There are several three (3) kinds of energy which may be released in an explosion, namely: (1) physical energy, (2) chemical energy and (3) nuclear energy

Physical energy may take such forms as pressure energy in gases, strain energy in metals or electrical energy. Examples of the violent release of physical energy are the explosion of a vessel due to high gas pressure and the sudden rupture of a vessel due to brittle fracture. Another important physical form is thermal energy. This is generally important in creating the conditions for an explosion rather than as a source of energy for the explosion itself. In particular, superheat in a liquid under pressure causes flashing off of the liquid if it is let down to atmospheric pressure.

Chemical energy derives from a chemical reaction. Examples of the violent release of chemical energy are explosion of a vessel due to combustion of flammable gas, and explosion of a reactor caused by decomposition of reaction products in a runaway chemical reaction. Chemical explosions are either (1) uniform explosions or (2) propagating explosions. An explosion in a vessel tends to be a uniform explosion, while an explosion in a long pipe gives a propagating explosion.

The magnitude and distribution of blast loads on a structure are governed by several factors, namely:

- Explosive properties: type of material, energy output and quantity of explosive
- Location of the detonation relative to the concrete structure
- Reinforcement of the pressure pulse through its interaction with ground and concrete

The reflected pressure and the reflected impulse are the forces to which the concrete walls ultimately respond. These forces vary in time and space over the exposed surfaced of the concrete walls, depending on the location of the detonation in relation to the concrete walls. 

The air blast shock wave is the primary damage mechanism in an explosion. The pressure it exerts on concrete wall surfaces may be several orders of magnitude greater than the loads for which the concrete walls are designed. An explosion has the following characteristics:
- The intensity of the pressures acting on the concrete walls can be extremely high,

  often above 100psi
- Pressures from an explosion decay rapidly with distance from the source hence, direct

  air-blast damages tend to cause more localised damage

- The duration of the event is very short, measured in thousandths of a second or


What Is an Unconfined Vapour Cloud Explosion and how to mitigate It?

Unconfined vapour cloud explosions (UCVEs) can pose a severe threat to personnel operating in hazardous environments, resulting in costly damages and casualties if left unchecked. As such, it is of utmost importance for personnel working within these industries to be aware of the basics of UCVEs - what they are, how they occur, and most importantly, how the personnel can protect themselves from UCVEs. This blog post will look into what constitutes an UCVE and several preventative measures that may help mitigate its devastating effects.

An unconfined vapour cloud explosion (UVCE) is a type of combustion that occurs when a large amount of flammable gas or liquid is released into the atmosphere. When these gases mix with oxygen present in the air, they can form an explosive mixture capable of releasing large amounts of energy when ignited. This energy then propels and spreads rapidly, resulting in a powerful explosion that can devastate anything in its blast area. UVCEs are particularly dangerous because explosions can occur far beyond the original point of release due to gases being carried by wind. It means an unconfined vapour cloud explosion has the potential to travel vast distances in search of ignition sources, resulting in a much larger blast radius and increased destruction.

UVCEs pose a serious threat to chemical plants and other industrial installations since they can result in costly damages and casualties. Numerous factors contribute to a plant or facility's unconfined vapour cloud explosion. Some of these include:
- Poorly maintained equipment such as pipelines, tanks, valves, hoses, etc.
- High temperatures and pressure inside a tank or pipeline
- A lack of preventive measures that limit the size and scope of an UCVE, such as fire retardants, flame arrestors, spark detection systems, etc.
- Poor housekeeping practices that increase the likelihood of ignition sources (cigarettes, electrical equipment, etc.) coming into contact with flammable vapours
- The presence of hydrogen or hydrocarbons with gas/oxygen mixture between the lower flammable limit (LFL) and upper flammable limit (UFL)
- Poorly designed ventilation systems that allow combustible vapours to build up without proper dispersal
These are just some factors that can contribute to an unconfined vapour cloud explosion and should be considered when working in hazardous environments.

The consequences of an unconfined vapour cloud explosion can be devastating, resulting in massive destruction and possibly loss of life. Some of the potential effects include:

- Severe property damage caused by the blast wave itself
- Fires are ignited due to the burning gases/liquid mix released during the explosion
- Toxic fumes being released into the atmosphere, posing health risks to those in the vicinity
- Loss of life and serious injury due to flying debris or direct contact with the blast wave
Given these potential consequences, it is essential for personnel operating in hazardous environments to be aware of preventive measures that can help mitigate the effects of a UVCE.

There are several steps that personnel and plant operators can take to help prevent the occurrence and reduce the severity of an unconfined vapour cloud explosion. These include:

- Conducting plant hazard simulation to reveal and identify hidden hazards
- Conducting simulation on various flammable gas leak scenarios to predict the severity and impact to the immediate surrounding
- Implementing risk prevention protocols such as conducting thorough inspections and establishing SOPs before starting a job and while in the process of completing it
- Regularly inspecting pipelines, tanks, valves, etc., for any signs of wear and tear or damage
- Installing flame arrestors, spark detection systems, and other preventive measures to limit the size of a fire/explosion in the event of an UVCE
- Regularly testing safety equipment (fire extinguishers, ventilation systems, etc.) to ensure they function properly
- Implementing strict housekeeping rules, such as no smoking or open flames near combustible materials and using spark-resistant tools whenever possible
- Utilising appropriate safety protocols (e.g., PPE) when handling flammable liquids/gases
- Utilising pressure relief devices to prevent over-pressurization of containers and, in turn, reduce the risk of explosive releases
- Installing fire suppression systems to quickly detect and put out any combustion in the event of an unconfined vapour cloud explosion
By taking the right steps, personnel and plant operators can help protect their plants from the devastating effects of an unconfined vapour cloud explosion. For those working in hazardous environments, it is essential to be aware of the potential consequences of a UVCE and the preventive measures they can take to protect their plants and personnel. By implementing the right protocols and preventive measures, personnel and plant operators can help reduce the risks associated with an unconfined vapour cloud explosion.

If an unconfined vapour cloud explosion occurs, personnel and plant operators should take immediate steps to minimize damage. These include:

- Immediately shutting off all sources of ignition in the affected area
- Activating emergency protocols, such as evacuating personnel and activating fire suppression systems
- Utilising appropriate safety measures, such as wearing protective clothing and respirators when entering the affected area
- Sealing off the affected area to prevent the spreading of toxic gases and vapours
- Working with local fire and rescue personnel to ensure the area is safe before attempting any repairs or clean-up
By taking the right steps, personnel can help minimize the damage caused by an unconfined vapour cloud explosion and protect personnel in the affected area.

The risks associated with an unconfined vapour cloud explosion are real. Nevertheless, a chemical plant can ensure that their personnel and facilities remain protected through implementing proper safety procedures and preventive measures. By understanding the potential consequences of a UVCE and taking the necessary steps to prevent them, personnel can help ensure plants and personnel remain safe from harm. Ultimately, the best way to protect against an unconfined vapour cloud explosion is to be proactive and take the necessary measures to identify and address any potential risks before an incident occurs. By doing so, plant operators can help ensure their personnel and facilities remain safe from the devastating effects of a UVCE.

Blast Effects Analysis - Jimmy Lea P/L

Major Hazard Facilities (MHFs) CFD Analysis

​Major hazard facilities (MHFs) are industrial sites such as:

- Military explosive storage facility

- Chemical manufacturing and storage
- Commercial explosive storage depots
- Explosive and munitions manufacturing facilities
- Gas processing plants
- LPG and LNG storage and distribution facilities

- Facilities that store oxidisers, peroxides, toxic solids and liquids materials
- Selected warehouses and transport depots
- Flammable and combustible fuel storage depots

A few examples of major accidents that occurred in a major hazard facility are: 
- Release of toxic material
- Release of flammable or combustible gas with gas/air mixture within LFL and UFL

- Explosion or dispersion of hazardous materials
- Fire and major structural failure
- An incident that leads to environmental damage

- Incidents due to sabotage

The first step in the hazard identification process is a process hazard analysis, which identifies potential major accidents at the major hazard facility and possible initiating events. Common methods used include: 
- Analysing process material properties and process conditions

- Reviewing organisation and industry experience
- Safety checklists
- Conducting what-if analysis on various scenarios
- Developing interaction matrixes
- Hazard and operability studies (HAZOPs)

​​​Our consultans provide modelling and simulation services of cryogenic materials for the purpose of providing consequence analysis. One of the flammable cryogenic materials is liquefied natural gas (LNG), particularly during its storage and distribution. The consequence analysis services we provide include: ​(1) Simulate gas pipe explosion. For example, our simulation will show that since LNG has a high vapour pressure and if left unchecked the pressure build up can rupture the pipe and the blast wave may compromise the bunker’s structural integrity. (2) If there is an LNG leakage but no explosion, the escaped LNG will form a pool. We have the experience to simulate LNG vapour cloud dispersion and through our comprehensive LNG gas dispersion analysis, we will determine, based on the environmental condition, how far and at what concentration does the LNG vapour cloud spread. (3) For the methane gas that vaporised from the LNG pool with concentration between LFL and UFL, we can simulate vapour cloud explosion and determine the consequence with respect to nearby structure and personnel.

(4) Our in-house chemical engineers will perform all necessary calculations to ensure the boundary conditions are appropriate and accurate. Then, the same chemical engineers will analyse the results to determine whether these results make engineering sense and realistic.

As for explosion scenarios in an MHF, we provide blast effects analysis and blast mitigation design to any major hazard facility or critical infrastructure and most importantly human lives from being attack by blast waves and flying fragments. We provide blast simulation as part of process hazard analysis and our report reveals what are the consequence if an explosion in a major hazard facility occurs. As for incidents due to sabotage, we help to protect a major hazard facility and we achieve this by conducting impartial 3rd-party independent threat and vulnerability analysis on any major hazard facility or critical infrastructure and human lives supported by advanced explicit dynamics modelling and simulation. Through an in-depth analysis of material, and structural behaviour (including large deformation, material fragmentation, solid-solid and gas-solid interactions), we are able to predict how a major hazard facility or critical infrastructure responds to threats such as explosive blast wave and fragment attack. ​The three pictures on the right show the contour of pressure magnitude which arose from a denotation occurring at the centre of the major hazard facility. This was conducted as part of the what-if analysis. With the results from this analysis, we proposed blast mitigation measures. From there, our mechanical and structural engineers performed detailed plant infrastructure reinforcement design.

Vapour Cloud Dispersion Modelling - Jimmy Lea P/L


Our plant hazard mitigation specialists provide professional plant safety simulation to support plant hazard, risk and consequence assessment in the chemical, petrochemical, hydrogen synthesis, LNG plants and all major hazard facilities. Our in-house PhD-qualified chemical process engineers ensure the boundary conditions employed are accurate, the numerical setup is appropriate to the problem, the simulation results are realistic and the recommendations are feasible.

- Determination of fragments radius of impact

- Establishment of pressure-impulse diagram in a detonation

- Fire and/or smoke propagation and time taken for its propagation

- Gas dispersion and explosion

- Gas explosion with structural response

- Hydrogen gas dispersion and explosion

- Hydrogen gas explosion with structural response

- LNG dispersion and vaporisation

- Pipe explosion and structural response

- Process vessel leakage and radius of impact

- Simulation of fragments penetrating a surface

- Temperature of structure exposed to fire

- Time taken for structure to reach certain temperature that compromises its structural integrity

​Accidents in a chemical plant can be divided into fires and explosions (42%), fires (29%), vapour cloud explosions (22%) with the remaining 8% attributed to floods and windstorms. Economic loss is consistently high for accidents that involved explosions. The most damaging type of explosion is an unconfined vapour cloud explosion, where a large cloud of volatile and flammable vapour is released and dispersed through the plant site followed by ignition and explosion of the cloud. Toxic release typically results in little damage to capital equipment, although the resulting personnel injuries, employee losses, legal compensation, and clean up liabilities can be significant. The most common root cause for toxic release is mechanical failures such as pipe failures due to corrosion, erosion, high pressure and seal/gasket failures (Source: Crowl & Louvar [2011] Chemical Process Safety, 3rd Edition, Prentice Hall).

Blast Effects Analysis - Jimmy Lea P/L
Blast Effects Analysis - Jimmy Lea P/L
Blast Effects Analysis - Jimmy Lea P/L
Blast Effects Analysis - Jimmy Lea P/L
Engineering & Simulation Consultants
Blast Effects Analysis - Jimmy Lea P/L
Blast Effects Analysis - Jimmy Lea P/L


Blast Effects Analysis - Jimmy Lea P/L
Blast Effects Analysis - Jimmy Lea P/L

Chemical PLants Blast Effects Analysis

Our blast consultancy firm provides third-party independent blast effects analysis (BEA) assessment to determine the adequacy of a bunker's design with respect to the storage of munitions or high-pressure piping and pressure vessels, often located in a major hazard facility. Our blast consultants begin by studying the existing storage facility, researching on the explosives being stored, building the 3D model and simulating various scenarios such as the locations of detonation and the amounts of explosive charge.

​UFC-3-340-02 guideline stated that the overpressure produced by an explosion that occurred inside a confined space would be amplified. This statement was supported by an independent study of urban blasts which determined that the confinement provided by the street buildings could increase the peak reflected overpressure by a factor of 4 times. In other study, it was determined that the blast wave propagation inside a tunnel or chamber had also showed that not only the peak overpressure generated in a confined space was higher than those produced from an explosion that occurred in open space, the duration of the blast wave was longer. This also enhanced the impulse, which was defined as the area under the overpressure history and was representative of the total energy imposed on the structure, thus the opportunity of survivability of the structure, or its elements were reduced.

From the simulation results, our comprehensive blast effects analysis report will answer the following questions:

- What is the degree of damage due to the blast wave and

  where are the damages located?

- What is the maximum amount of explosives that can be

  safely stored to avoid damage to the bunker?

- Are the concrete walls and its underlying reinforcement bars

  capable of containing the blast waves?

- Will the bunker's walls be breached or collapse?

- Can the bunker's door withstand the blast wave?

- Are the door frame effective against the door being punched

  out of the bunker by the blast wave?

- How far and how fast will the fragments fly?

- Will personnel working around the bunkers be injured by

  flying fragments if an explosion was to occur?

- What is the degree of collateral damage on neighbouring

  buildings or structures?

- What are the values of blast load?

​- What is the probability of sympathetic detonation occurring?

- What reinforcement design is required to ensure personnel

  working outside the bunkers are protected?

- How effective is the reinforcement design?