Best  Way To Transport Hydrogen Over long distances


As a manufactured fuel, hydrogen can be produced in a decentralized way in most countries around the world. This means, even in a net zero economy, the global trade of hydrogen could look quite different to the current international trade in fossil fuels, including natural gas. With further declines in the costs of renewable electricity and electrolyzers, regions which have lower cost renewable electricity may develop an economic advantage in the production of low-cost hydrogen, but for hydrogen to become a globally traded commodity, the cost of imports needs to be lower than the cost of domestic production. Unlike oil or natural gas, transporting hydrogen over long distances is not an easy task. Hydrogen liquefaction is an extremely energy-intensive process, while maintaining the low temperature required for long-distance transportation and storage purposes results in additional energy losses and accompanying costs. The upside is that hydrogen can be converted into multiple carriers that have a higher energy density and higher transport capacity and can potentially be cheaper to transport over long distances.


Among the substances currently identified as potential hydrogen carriers suitable for marine shipping, liquid ammonia, the so-called ‘liquid organic hydrogen carriers’ in general (toluene-methylcyclohexane (MCH) in particular), and methanol have received the most attention in recent years. This paper compares the key techno-economic characteristics of these potential carriers with that of liquefied hydrogen in order to develop a better understanding of the ways in which hydrogen could be transported overseas in an efficient manner. The paper also discusses other factors, beyond techno-economic features, that may affect the choice of optimum hydrogen carrier for long distance transport, as well as the global trade, of hydrogen.

Transporting H2 over long distances - Jimmy Lea P/L

Hydrogen Plant Design

We provide hydrogen plant design services for the production of hydrogen gas as fuel. Our services include conceptual design, front-end-engineering design (FEED) and detailed design. We differentiate ourselves by offering performance-based design verification using our in-house simulation capabilities.​

Dehydrogenation of MCH - Jimmy Lea P/L

Dehydrogenation of MCH Over Pt-based Catalyts Supported on Granular Activated Carbon 


The dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon was developed. Sulphuric acid, hydrogen peroxide, nitric acid and aminopropyl triethoxy silane were adopted to modify the granular activated carbon. The structural characterizations suggested that the carbon materials had a large surface area, abundant pore structure, and a high number of oxygen-containing functional groups, which influenced the Pt-based catalysts on the particle size, dispersion and dehydrogenation activity. The hydrogen temperature-programmed reduction technique was utilized to investigate the interaction between the active component Pt and the various functionalized granular activated carbon materials. The CO pulse technique revealed the particle sizes and dispersion of the as-prepared Pt-based catalysts. Finally, the Pt-based catalysts were successfully applied to study their catalytic activity in the dehydrogenation reaction of methylcyclohexane. The results showed that the Pt-based catalyst over granular activated carbon functionalized with sulphuric acid groups had a higher conversion of methylcyclohexane (63%) and a larger hydrogen evolution rate (741.1 mmol/gPt1/min) than the other resulting Pt-based catalysts at 300 deg C.

AUSTRALIA          SINGAPORE

Engineering & Simulation Consultants